Fabrication and Composition Control of Three-Dimensional Dielectric Metal Microstructure Using Photocatalyst Nanoparticles

نویسندگان

  • Hisamichi Yoshigoe
  • Shotaro Kadoya
  • Satoru Takahashi
  • Kiyoshi Takamasu
چکیده

Recently, three-dimensional microstructures have been attracting much attention because of their potential application to electromagnetic devices operating with specific frequencies such as THz wave. For suitability in such applications, the structures often need to have complex three-dimensional shapes, be smaller than or at least as small as the applied wavelengths, consist of metals or dielectric materials, and have certain electromagnetic characteristics such as high permittivity. Although there are several methods for fabricating micro-structures, few of them satisfy all of these conditions. We propose a new fabrication method for dielectric-metal three-dimensional structures with sizes of a few tens of micrometers. The main feature of our method is the extraction of metal using photocatalyst nanoparticles. Silver ions in solution are reduced to neutral silver by electrons from the photocatalyst nanoparticles. Experimental results show that our system can be used to fabricate threedimensional structures, and we propose a new method for controlling the composition of the structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vacuum template synthesis of multifunctional nanotubes with tailored nanostructured walls

A three-step vacuum procedure for the fabrication of vertical TiO2 and ZnO nanotubes with three dimensional walls is presented. The method combines physical vapor deposition of small-molecules, plasma enhanced chemical vapor deposition of inorganic functional thin films and layers and a post-annealing process in vacuum in order to remove the organic template. As a result, an ample variety of in...

متن کامل

Well-controlled metal co-catalysts synthesised by chemical vapour impregnation for photocatalytic hydrogen production and water purification.

As co-catalyst materials, metal nanoparticles (NPs) play crucial roles in heterogeneous photocatalysis. The photocatalytic performance strongly relies on the physical properties (i.e., composition, microstructure, and surface impurities) of the metal NPs. Here we report a convenient chemical vapour impregnation (CVI) approach for the deposition of monometallic-, alloyed, and core-shell structur...

متن کامل

Photocatalyst Ag@N/TiO2 Nanoparticles: Fabrication, Characterization, and Investigation of the Effect of Coating on Methyl Orange Dye Degradation

In this research, N-doped TiO2 (N/TiO2) nanoparticles have been synthesized by a sol-gel method. N/TiO2 nanoparticle has been coated with Ag metal by photochemical method. Triethylamine, N(CH3CH2)3, have been used as precursors of Nitrogen, titanium tetraiso-propoxide (TTIP), Ti[OCH(CH3)2]4, used as precursors of titanium and Ag(NO3)2 used as precursors of Silver in synthesis of these nanoparti...

متن کامل

Antimicrobial Investigation of CuO and ZnO Nanoparticles Prepared by a Rapid Combustion Method

In recent years, fabrication of metal oxide nanoparticles is intensively gaining the interest of various chemists as well as biochemist due to their applications in different fields. Among all the transition metal oxides, CuO and ZnO are the important metal oxide nanoparticles exhibiting tremendous properties and a wide range of applications. Both CuO and ZnO nanoparticles were prepared by comb...

متن کامل

Nanostructured surfaces and assemblies as SERS media.

Metallic nanostructures attract much interest as an efficient media for surface-enhanced Raman scattering (SERS). Significant progress has been made on the synthesis of metal nanoparticles with various shapes, composition, and controlled plasmonic properties, all critical for an efficient SERS response. For practical applications, efficient strategies of assembling metal nanoparticles into orga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJAT

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014